Example 2- FM radio LPDA Design

- ➤ Based on work of R. E. Carrel.
- 1. Select or specify design parameters
 - a. Desired directivity (gain) 8 dBi
 - b. Frequency range (f_{high} and f_{low}) $f_{\text{low}} = 85 \text{ MHz}$, $f_{\text{high}} = 110 \text{ MHz}$
 - c. Desired input impedance R_0 (real) $R_0 = 75 \Omega$
- 2. Use graph [Balanis 3rd Edn., Figure 11.13, p. 631], which shows contours of constant directivity versus σ (relative spacing) and τ (scale factor), to select σ and τ for the desired directivity.

$$\sigma = 0.159$$
 and $\tau = 0.865$

3. Calculate the apex half angle α using-

$$\alpha = \tan^{-1} \left(\frac{1 - \tau}{4\sigma} \right) = \tan^{-1} \left(\frac{1 - 0.865}{4(0.159)} \right) \Rightarrow \underline{\alpha = 11.984^{\circ}}$$

$$\text{apex angle} \Rightarrow \underline{2\alpha = 23.968^{\circ}}$$

Figure 11.13 Computed contours of constant directivity versus σ and τ for log-periodic dipole arrays. [Balanis 3rd Edn., p. 631]

- 4. Find length l_1 (Note: start count of elements with longest) of the **longest** element of LPDA
 - \triangleright take length in wavelengths from graph if using optimum σ and τ ;

$$\lambda_{\text{max}} = c/f_{\text{low}} = 3 \times 10^8 / 85 \times 10^6 = 3.5294 \text{ m} \implies \underline{l_1} = 0.561 \, \underline{\lambda_{\text{max}}} = 198 \text{ cm}$$

requency in the desired frequency range. (N/A)

Measured length, normalized by λ_{max} , of longest dipole in LPDA versus optimum σ and τ .

5. Find length l_N of the **shortest** element of the LPDA

 \triangleright take length in wavelengths from graph where $\lambda_{min} = c / f_{high}$ is the wavelength at the highest frequency in the desired frequency range.

 $\lambda_{\min} = c/f_{\text{high}} = 3 \times 10^8 / 110 \times 10^6 = 2.7273 \text{ m} \implies \underline{l_N} = 0.27 \lambda_{\min} = 73.64 \text{ cm}$

Estimated length, normalized by λ_{\min} , of shortest dipole in LPDA versus σ and τ .

6. Calculate location R_1 of **longest** element (as measured from the apex)-

$$R_1 = \frac{l_1}{2} \cot(\alpha) = \frac{198}{2 \tan(11.984^\circ)} \Rightarrow \underline{R_1 = 466.4 \text{ cm}}$$

7. Calculate the total bandwidth B_s , includes additional bandwidth B_{ar} due to active region, using the specified bandwidth B-

$$B = f_{\text{high}} / f_{\text{low}} = 110 \text{ MHz/85 MHz} = 1.29412$$

$$B_{\text{ar}} = 1.1 + 7.7 (1-\tau)^2 \cot(\alpha) = 1.1 + 7.7 (1-0.865)^2 \cot(11.984^\circ) = 1.76112$$

$$B_s = B_{ar} \cdot B = 1.76112 \cdot 1.29412 = 2.2791$$

8. Calculate the approximate number *N* of elements required for design

$$N = 1 + \log_{10}(B_s)/\log_{10}(1/\tau) = 1 + \log_{10}(2.2791)/\log_{10}(1/0.865) = 6.68 \Rightarrow \underline{N} \approx \underline{7}$$

9. Calculate the approximate distance $L_{\rm T}$ between the longest and shortest elements.

$$L_T = \frac{l_1}{2}(1 - 1/B_s)\cot(\alpha) = \frac{198}{2}(1 - \frac{1}{2.2791})\cot(11.984^\circ) \Rightarrow \underline{L_T = 261.76 \text{ cm}}$$

10. Calculate the location R_2 (from the apex) and length l_2 of the second longest element using the scale factor τ , R_1 , and l_1 -

$$R_2 = R_1 \ \tau = 466.4(0.865) \implies R_2 = 403.44 \text{ cm}$$

and
 $l_2 = l_1 \tau = 198 (0.865) \implies l_2 = 171.27 \text{ cm}$

11. Recursively calculate the location R_{n+1} and length l_{n+1} of the $n+1^{th}$ element(s) using the scale factor τ , R_n , and l_n

e.g.,
$$R_{n+1} = R_n \tau = R_n (0.865)$$
 & $l_{n+1} = l_n \tau = l_n (0.865)$.

Stop when l_{n+1} is less than or equal to l_N (calculated in step 5.).

- 12. Count actual number of elements and calculate actual length of LPDA (compare to approximate calculations in steps 8. & 9.).
 - > Steps 10-12 done using MS-Excel spreadsheet shown on next page.

Steps 10. & 11.		Calculate: $R n+1 = R n * \tau$ and $l n+1 = l n * \tau$						
		7	where τ =	0.865				
<u>n</u>	<u>ln (cm)</u>	<u>Rn (cm)</u>						
1	198	466.4						
2	171.270	403.436						
3	148.149	348.972						
4	128.148	301.861						
5	110.848	261.110						
6	95.884	225.860						
7	82.940	195.369						
8	71.743	168.994	Stop since	e 18 < 1N = 73	.64 cm			
Step 12.	Actual # of 6	elements &	Napprox =	7	Nactua	l = 8		
	antenna length		LT = 261.76	6 cm	L actual = R	1 - R8 =	297.406	cm

13. Select a length to diameter ratio K = l/d for the elements of the LPDA. This choice is a compromise between mechanical strength for the largest and smallest elements, available tubing sizes, and the selected diameter of the boom.

Choose boom diameter $\underline{D} = 7/8$ " = 2.223 cm

If $d_1 = 5/8$ " = 1.5875 cm, then $K_1 = l_1/d_1 = 198/1.5875 = 124.7 \implies \underline{K} = 125$.

Check if this works on smallest element-

 $d_8 = l_8/K = 71.7/125 = 0.574 \text{ cm (OK)}$

- 14. Calculate the diameter $d_n = l_n / K$ for each element. Then, select the closest available tube/pipe/rod diameter to the calculated value.
- 15. Calculate the actual length to diameter ratio K_n for each element and the average length to diameter ratio K_{ave} after quantization. Check for unusually large deviations from desired K (may want to go back to step 13. and select another value of K).
 - > Steps 14-15 done using MS-Excel spreadsheet shown below.

Step 13.	Select $K =$	125					
Step 14. & 15.		dn = ln / K	K actual = l n		/ d quantized		
		Exact	xact Quantized		Actual	$\Delta K =$	
n	ln (cm)	dn (cm)	dn (cm)	dn (in)	Kn	Kn-K	
1	198	1.584	1.5875	5/8	124.724	-0.28	
2	171.270	1.370	1.4290	9/16	119.853	-5.15	
3	148.149	1.185	1.1110	7/16	133.347	8.35	
4	128.148	1.025	1.0320	13/32	124.175	-0.83	
5	110.848	0.887	0.8730	11/32	126.974	1.97	
6	95.884	0.767	0.7940	5/16	120.761	-4.24	
7	82.940	0.664	0.6350	1/4	130.614	5.61	
8	71.743	0.574	0.5560	7/32	129.034	4.03	
				Average K =	126.185		

16. Calculate the approximate average characteristic impedance of the active region elements-

$$Z_a = 60 \ln(2 X K_{ave}/\pi) = 60 \ln[2(0.58996)126.185/\pi] \Rightarrow \underline{Z_a = 231.508 \Omega}$$

where $X = 8 \tau \sigma/(1 + \tau) = 8(0.865)0.159/(1 + 0.865) = 0.58996$.

17. Find the characteristic impedance of the unloaded transmission line Z_0 for the desired input impedance R_0 -

$$Z_{0} = \frac{R_{0}^{2}}{4Z_{a}X} + R_{0}\sqrt{\left(\frac{R_{0}}{4Z_{a}X}\right)^{2} + 1} = \frac{75^{2}}{4(231.5)0.59} + 75\sqrt{\left(\frac{75}{4(231.5)0.59}\right)^{2} + 1}$$
$$= 10.296 + 75.7035 = 86.000\Omega$$

18. Calculate the **center-to-center** spacing *S* of the booms using the unloaded, cylindrical, twin-lead transmission line formula-

$$S = D \cosh(Z_0/120) = 2.223 \cosh(86/120) \implies S = 2.819 \text{ cm}$$

where D is the diameter of the booms (assumed to be identical). The air gap Δ_{gap} between the inner surfaces of the booms is-

$$\Delta_{\rm gap} = S - D = 2.819 - 2.223 \implies \underline{\Delta_{\rm gap}} = 0.596 \text{ cm} = 5.96 \text{ mm}.$$

Perspective View of 8 Element LPDA for FM radio

Not to scale. Dimensions shown on following views of bottom and top booms

n	ln (cm)	dn (cm)	Rn (cm)	element-element spacing	
1	198	1.5875	466.4		(cm)
2	171.270	1.4290	403.436	R1 - R2	62.964
3	148.149	1.4290	348.972	R2 - R3	54.464
4	128.148	1.2700	301.861	R3 - R4	47.111
5	110.848	1.1110	261.110	R4 - R5	40.751
6	95.884	1.1110	225.860	R5 - R6	35.250
7	82.940	1.0320	195.369	R6 - R7	30.491
8	71.743	0.9525	168.994	R7 - R8	26.375

scale 0.03" = 1 cm

n	ln (cm)	ln (cm) dn (cm) Rn (cm)		element-element spacing		
1	198	1.5875	466.4		(cm)	
2	171.270	1.4290	403.436	R1 - R2	62.964	
3	148.149	1.4290	348.972	R2 - R3	54.464	
4	128.148	1.2700	301.861	R3 - R4	47.111	
5	110.848	1.1110	261.110	R4 - R5	40.751	
6	95.884	1.1110	225.860	R5 - R6	35.250	
7	82.940	1.0320	195.369	R6 - R7	30.491	
8	71.743	0.9525	168.994	R7 - R8	26.375	

scale 0.03" = 1 cm